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Endeavors in Micro-imaging
Spectrometry

Michael M. Rosen
30 August 1995

The goal of this apparatus is to better enable characterization of tissue
samples both on a microscopic scale and across the visible spectrum. The set-
up consists of a phase-contrast inverted Nikon microscope, a single-grating
imaging spectrometer, a CCD camera, and a computer potentially controlling all
three of the previous devices. The computer uses an object-oriented program
development environment called LabVIEW to run the three devices. This
apparatus will hopefully enable better, less invasive surgical procedures, as well
as permitting higher-resolution, more up-close observation of cellular dynamics.

Apparatus

The Nikon Diaphot microscope (Fig. 1A) has both transmitted and
reflected light capabilities, as tissue samples exhibit different properties when
observed through transmitted as opposed to reflected light. The microscope
contains several apochromatic objectives which will provide up to 400 times
amplification of the sample. An incandescent bulb is used to illuminate the
sample and provide a white light source. The image is relayed out the side of the
microscope and through a Nikon macro lens (Fig. 1B). This lens will refocus the
image onto the slit of the spectrometer.

We have been using a Kaiser Optical Systems HoloSpec holographic
imaging spectrometer (Fig. 1C). The spectrometer consists of a slit, 20 microns
wide and about 5 mm tall, which allows in only a small area of the sample image.
Once inside the spectrometer, the image is focused into a grating, or mirrorlike
silver plate with thousands of grooves per millimeter. This grating will break up
the light coming from the sample into its respective spectral elements. The
particular spectrometer we are now using will be able to disassemble the light
over the entire visible spectrum (we had earlier been using an older spectrometer
which only allowed for a range of 70 nm at a time; the present one is calibrated to
display light ranging from 392-790 nm, or a range of almost 400 nm). This
fragmented light will be bounced off a mirror and refocused onto the CCD
Camera (Fig. 1D).



A CCD (Charged Coupled Device) is simply a chip that is connected, via a
GPIB (General Purpose Interactive Bus) cable to the computer. The chip
consists of 1000 by 1024 pixels; each pixel consumes 2 bytes. Hence, use of the
entire chip will cost the user two Mb. The CCD Camera essentially uses this chip
in place of film. So when the shutter of the camera is opened, the CCD is
exposed to the refocused, broken-up light of the image coming from the
spectrometer. This image is then relayed to the computer (Fig. 1E), and the
LabVIEW program for analysis.

The program, known as "Camera Control V", requires as an input the
number of pixels desired. The user can specify number of columns, rows, first
column, and first row (Fig. 2C), to glean data from exactly the desired places on
the chip. The user also controls the length of time that the camera shutter is left
open (Fig. 2D), which will vary the amount of light allowed into the camera. After
setting these options, the user can open the shutter, using the "start" button on
the program control panel (Fig. 2E), and hence expose the chip. The data makes
its way to the computer and within 30 seconds (for only one quarter of the whole
chip, or 1024 by 256 pixels) a picture of the chip can be displayed on the control
panel (Fig. 2A). This is a three-dimensional picture, two of the dimensions being
the "coordinates" of the chip, the other being light intensity. The y-direction on
the chip corresponds to wavelength, as the picture on the chip is simply the slit of
the sample being expanded along the spectral range of the spectrometer.

Hence, what we are most interested in is the relationship between this y-plane
and the z-plane: intensity. We would thus like to hold the x-plane constant and
make a two-dimensional graph. This process is similar to taking a cross-section
of a cube (three dimensions) and displaying this square (two dimensions). This
two-dimensional graph is displayed as the second graph on the control panel,
known as a "lineout” (Fig. 2B). The program leaves the option open of taking
several lines out from the three-d picture and displaying graphs of light intensity
by wavelength. In general, troughs of intensity in these lineout graphs indicate
peaks in light absorbance. We are thus able, roughly, to locate the proper
wavelengths for the peak absorbances of the sample.

Of course, that which is measured by the eye on Camera Control V's
control panel can only be rough. Hence, there is an option in the program to
relay the data from both the original picture and the lineout picture to another file,
for manipulation on more powerful computers. This option increases both
precision and convenience.

We've encountered two chief problems while working with the program
and the apparatus in general. The first problem involves expediency. The way
the program is presently organized, it takes us 30 seconds to take one picture of
one quarter of the CCD chip. If we wanted to use the entire chip, it would take us
2 minutes to receive the image. Now that is two minutes for only the amount of
sample that fits within the (approximately) 20 micron by 5 mm area of the slit. If
we have a sample that is about one square cm in area, we would have to take



1000 separate pictures to get data for the entire sample. On top of the 2000
minutes that it would take to do so, we would have to realign the sample under
the microscope after every exposure, which would take a lot longer. Thus, there
is some software written to control, using LabVIEW and another GPIB cable, a
motorized stage for the microscope. A type of "scan” command could be added
to the present Camera Control V program (see enclosed description of Stage
Scan v.1.) to facilitate quicker viewing of the entire sample. This addition could
cut down on a lot of alignment time, yet the problem of speed still exists, as it
would still take at least 2000 minutes to view the entire square cm sample. Some
more options for increasing efficiency include simply not viewing every image
taken and rather relaying the data directly to the file and a workstation (since the
viewing itself eats up a lot of time), increasing computer memory, or simply
replacing the computer with another, more powerful one. Yet another option is
using a different program language to run the apparatus, however LabVIEW,
while not known for its speed, is very convenient and user-friendly.

Another major problem we've encountered has been the interference of
the white light spectrum with the spectrum of the sample. This occurs because
the incandescent bulb used as the source light for the sample has a spectrum of
its own, so the pictures we see are not purely the intensity of the sample at
different wavelengths, but rather the combined intensities of the sample and the
white light used to illuminate it (Fig. 3B). It thus becomes necessary to scale the
image we receive according to the white light spectrum. In order to do this, we
must first measure the white light spectrum, then set its peak intensity equal to 1
(Fig. 3C), and scale the rest of the spectrum accordingly. We can then divide the
intensity at each point along the sample's spectrum by that at the respective point
of the white light spectrum and thus receive the proper intensity graph for the
sample (Fig. 3D).

Applications

The graphs shown on Fig. Page 3 all relate to pictures taken of a suture
(Fig. 3A). A suture is simply a thread used by surgeons to stitch together open
parts of the body during surgery. In order to do so, however, the surgeon must
perform a fairly invasive, time-consuming surgery. One idea to improve this
surgery is welding the ends of the suture together using a laser instead of tying
them together. In order to maximize laser efficiency (amount of energy and time
of exposure to laser light), we must find the wavelength light that the suture
would absorb best. Thus, we would use our apparatus to find the ideal
wavelength at which to weld the ends of the suture.

Another application we've tested has been tissue welding. This is a
process that employs lasers and a protein-based glue to repair organ ruptures.
The glue is heated by the laser, as are the ends of the tissue, and when they
cool, the rupture will close up. Again, to get high laser productivity, we need to



know the proper wavelength laser with which to "cook" the glue (i.e. the
wavelength that absorbs the most light). Our apparatus has been and can be
used to find that wavelength.

Other applications include finding the specific light that will increase the
contrast between nerve and muscle in carpal tunnel surgery and general tissue
characterization. Ultimately, we would like an apparatus similar to ours to see
actual clinical use, but at this point we are focusing on completing and refining
the setup and then putting it into research-oriented use.
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Description of Camera Control V
Front Panel

31 August 1995
Michael M. Rosen

The front panel of the LabVIEW Camera Control V (CCV) "virtual
instrument” (VI) enables the user to easily operate the CCD Camera that is part
of the Micro-Imaging Optical Spectrometer (MIOS) apparatus. This sheet
explains the functions on the front panel:

(Refer to LabVIEW manuals for more detailed information)

1-5: CCV INPUTS

1) First Column: the column number of the first column on the CCD chip to be
displayed. There are 1000 numbered columns, from 0 to 999.

2) Number of Columns: the number of columns to be displayed.

3) First Row: the row number of the first row on the CCD chip to be displayed.
There are 1024 numbered rows, from 0 to 1023.

4) Number of Rows: the number of rows to be displayed.

5) Exposure Time: the length of time (ms) that the shutter is open.

6-10: CCV COMMANDS

6) Start: trips shutter of CCD camera and opens it for amount of time specified.
7) Save Data: saves data relayed by CCD camera into file selected by user.

8) Take a Lineout: holds constant the x-value on Main Display Screen (display
11) of specified cursor (cosmetic device D) and graphs, on display 12, the z-scale
(light intensity) by y-scale (y-coordinate of CCD chip/ wavelength). User must
employ cursor (cosmetic device D), or simply use mouse to move cursor.



9) Save Lineout: saves data contained in the lineout graph into file selected by
user.

10) Done with Picture: terminates programmatic loop and disables saving and

lineout capabilities. User should press button only when sure there is no more to
be done with that particular exposure.

11-12: CCV DISPLAYS

11) Main Display Screen: displays three-dimensional image relayed over GPIB
cable by CCD camera. Image on main display screen is that of CCD chip. y-axis
is y-coordinate of CCD chip, x-axis is x-coordinate of CCD chip, and z-axis is light
intensity, as seen on CCD chip. All axes autoscale according to data. On the y-
axis, the up direction (toward 1000) corresponds to a DECREASE in wavelength
(in the blue direction of the visible spectrum). Conversely, the down direction is
an INCREASE in wavelength (toward the red). Wavelength information is
displayed on Cosmetic Displays F and G. Image/display data can be saved
using Save Data command (command 7).

12) Lineout Display Screen: displays two-dimensional image of "line" taken from
Main Display Screen (display 11) according to cursor position (cosmetic device
D). Cursor determines constant x-value (of Main Display) but x-axis of Lineout
Display corresponds to y-axis of Main Display (y-coordinate of CCD chip/
wavelength) and y-axis of Lineout corresponds to z-axis of Main (light intensity).
Progress in out direction (toward 1022) along x-axis corresponds to a
DECREASE in wavelength (toward the blue) and progress toward 0 is an
INCREASE in wavelength (toward the red). This data can be saved using Save
Lineout command (command 9).

A-C: COSMETIC INPUTS (OBSOLETE?)

These devices were used with the old spectrometer, and depended on the
specified center wavelength of the spectrometer. With the new spectrometer,
these inputs will most likely be unnecessary, as there will only be one center
wavelength on the new spectrometer. These are changes in progress.

D-E: COSMETIC DEVICES: CURSORS




D) Main Display Screen cursors: These two cursors move in Main Display Screen
and can be used both to pinpoint specific x-, y-, and z-values and to set a
constant x-value for a lineout.

E) Lineout Display Screen cursors: These apply to Lineout Display (can be
moved up and down to trace lineout graph), but are generally mere adjucts to
cursors D. When cursor D is moved up and down (y-plane) in Main Display,
cursor E moves side to side (x-plane), as y-plane in Main Display corresponds to
x-plane in Lineout Display.

F-G: COSMETIC DISPLAYS

Using equations in program code, y-coordinate in Main Display data is converted
to corresponding wavelength (using old spectrometer, this was dependent on
specified center wavelength, but with new spectrometer, there will be fewer
variables in these equations). Displays F and G will show wavelength
corresponding to y-coordinate on which activated cursor (pink or yellow) is
situated.
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Description of Stage Scan Front
Panel

31 August 1995
Michael M. Rosen

In order to expedite operation of the Micro-Imaging Optical Spectrometry
apparatus, there has been software written (a LabVIEW virtual instrument called
Stage Scan (SS)) to instruct motorized microscope stages to perform a scan of
the tissue sample. This is a reference sheet to facilitate the use of that "v.i."

N.B. Due to the non-arrival of the stages during my term at the Lab, this v.i. has
never been tested. There may be problems in its operation. The user is
requested to consult with the manual enclosed with the motorized stages in order
to modify the program so that it works.

1) AUTOSCAN MODE INPUTS

1A) Initial X-value: instructs stage where to begin scanning in x-plane.
1B) Initial Y-value: instructs stage where to begin scanning in y-plane.
1C) Number of Steps: number of increments in scanning process.

1D) Step Width: width of increment.

2) MANUAL SCAN MODE INPUTS

2A) Xstep: commands movement for absolute distance in x-plane.

2B) Ystep: commands movement for absolute distance in y-plane..

3) ABSOLUTE POSITION INPUTS

3A) Toxvalue: commands movement to absolute x-coordinate.

3B) Toyvalue: commands movement to absolute y-coordinate.



4) SCAN SPEED INPUTS

4A) X-speed: sets speed of motor moving in x-direction (motor Xx).

4B) Y-speed: sets speed of motor moving in y-direction (motor y).

5) SERIAL PORT INPUTS

5A) Port Number: informs RS232 connection which port to connect to.

5B) Action: instructs RS232 board to either write inputted information from
program or read outputted information from the stage.

6-7) STRING-RELATED OUTPUTS

6) Length of String: a non-crucial output; simply informs user how long string
inputted to RS232 board was.

7) Concatenated String: describes to user what string looks like.
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